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plication to real-world data is also presented. 

© 2016 EcoSta Econometrics and Statistics. Published by Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Testing whether a sample of observations comes from a Gaussian distribution is a problem that has attracted a great

deal of attention over the years. This is not perhaps surprising in view of the fact that normality is a common maintained

assumption in a wide variety of statistical procedures, including estimation, inference and forecasting procedures. In model

building, a test for normality is often a useful diagnostic for assessing whether a particular type of stochastic model may

provide an appropriate characterization of the data (for instance, non-linear models are unlikely to be an adequate approx-

imation to a time series having a Gaussian one-dimensional marginal distribution). Normality tests may also be useful in

evaluating the validity of different hypotheses and models to the extent that the latter rely on or imply Gaussianity, as is

the case, for example, with some option pricing, asset pricing, and dynamic stochastic general equilibrium models found

in the economics and finance literature. Other examples where normality or otherwise of the marginal distribution is of

interest, include value-at-risk calculations (e.g., Cotter, 2007 ) and copula-based modeling for multivariate time series with

the marginal distribution and the copula function being specified separately. Kilian and Demiroglu (20 0 0) and Bontemps

and Meddahi (2005) give further examples from economics, finance and econometrics where testing for normality is of

interest. 

Although most of the voluminous literature on the subject of testing for univariate normality has focused on the case

of independent and identically distributed (i.i.d.) observations (see Thode, 2002 , for an extensive review), a small number

of tests which are valid for dependent data have also been considered. The latter include tests based on the bispectrum

(e.g., Hinich, 1982; Nusrat and Harvill, 2008; Berg et al., 2010 ), the characteristic function ( Epps, 1987 ), moment conditions

implied by Stein’s characterization of the Gaussian distribution ( Bontemps and Meddahi, 2005 ), and classical measures of
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skewness and kurtosis involving standardized third and fourth central moments ( Lobato and Velasco, 2004; Bai and Ng,

2005 ). A feature shared by these tests is that they all rely on asymptotic results obtained under dependence conditions

which typically require the autocovariances of the data to decay towards zero, as the lag parameter goes to infinity, suffi-

ciently fast to be (at least) absolutely summable. It has long been recognized, however, that such short-range dependence

conditions may not accord well with the slowly decaying autocovariances of many observed time series. 

The purpose of this paper is to discuss a test for normality which may be used in the presence of not only short-range

dependence but also long-range dependence and antipersistence. The defining characteristic of stochastic processes with

such dependence structures is that their autocovariances decay to zero as a power of the lag parameter and, in the case

of long-range dependence, slowly enough to be non-summable. Models that allow for long-range dependence have been

found to be useful for modeling data occurring in fields as diverse as economics, geophysics, hydrology, meteorology, and

telecommunications; a summary of some of the empirical evidence on long-range dependence can be found in the collection

of papers in Doukhan et al. (2003) . 

The normality test we consider here is based on the Anderson–Darling distance statistic involving the weighted quadratic

distance of the empirical distribution function of the data from a Gaussian distribution function ( Anderson and Darling,

1952 ). Unlike tests based on measures of skewness and kurtosis, which can only detect deviations from normality that

are reflected in the values of such measures, normality tests based on the empirical distribution function are known to

be consistent against any fixed non-Gaussian alternative. The Anderson–Darling test also fares well in small-sample power

comparisons for i.i.d. data relatively to the popular correlation test of Shapiro and Wilk (1965) and the moment-based tests

of Bowman and Shenton (1975) and Jarque and Bera (1987) (see, e.g., Stephens, 1974 , and Thode, 2002 , Ch. 7). Furthermore,

the Anderson–Darling test is superior, in terms of asymptotic relative efficiency, to distance tests such as those based on the

(unweighted) Cramér–von Mises and Kolmogorov–Smirnov statistics ( Koziol, 1986; Arcones, 2006 ). 

Our analysis extends earlier work by considering the case of correlated data from stationary (in the strict sense) frac-

tionally integrated processes, which may be short-range dependent, long-range dependent or antipersistent depending on

the value of their dependence parameter. Unfortunately, however, inference based on conventional large-sample approxima-

tions is anything but straightforward in such a setting because the weak limit of the null distribution of the test statistic, as

well as the appropriate norming factor, depend on the unknown dependence parameter of the data and on the particular

estimators of location and scale parameters that are used in the construction of the test statistic. 

As a practical way of overcoming these difficulties, we propose to use the bootstrap to estimate the null sampling dis-

tribution of the Anderson–Darling distance statistic and thus obtain estimates of P -values and/or critical values for a nor-

mality test. Our approach relies on the autoregressive sieve bootstrap, which is based on the idea of approximating the

data-generating mechanism by an autoregressive sieve, that is a sequence of autoregressive models that increase in order

as the sample size increases without bound ( Kreiss, 1992; Bühlmann, 1997 ). The bootstrap-based normality test is easy

to implement and requires knowledge (or estimation) of neither the value of the dependence parameter of the data nor

of the appropriate norming factor for the test statistic. Furthermore, the bootstrap scheme is the same under short-range

dependence, long-range dependence and antipersistence. 

We note that Beran and Ghosh (1991) and Boutahar (2010) obtained results relating to the asymptotic behavior of

moment-based and distance-based statistics under long-range dependence, but did not discuss how operational tests for

normality might be constructed. To the best of our knowledge, the problem of developing an operational normality test

which is valid for data that are neither independent nor short-range dependent has not been tackled in the existing litera-

ture. 

The plan of the paper is as follows. Section 2 formulates the problem and introduces the test statistic and the class

of stochastic processes of interest. Section 3 discusses the autoregressive sieve bootstrap approach to implementing the

distance test of normality. Section 4 examines the finite-sample properties of the proposed test by means of Monte Carlo

experiments. Section 5 presents an application to a set of U.S. economic and financial time series. Section 6 summarizes and

concludes. 

2. Assumptions and test statistic 

Suppose X n := { X 1 , X 2 , . . . , X n } are consecutive observations from a stationary stochastic process X := { X t } t∈ Z satisfying 

X t − μ = 

∞ ∑ 

j=0 

ψ j ε t− j , t ∈ Z , (1)

for some μ ∈ R , where { ψ j } j∈ Z + is a square-summable sequence of real numbers (with ψ 0 = 1 ) and { ε t } t∈ Z is a sequence

of i.i.d., real-valued, zero-mean random variables with variance σ 2 ∈ (0, ∞ ). The objective is to test the null hypothesis that

the one-dimensional marginal distribution of X is Gaussian, 

H 0 : F (μ + γ 1 / 2 
0 

x ) − �(x ) = 0 for all x ∈ R , (2)

where γk := Cov (X k , X 0 ) = σ 2 
∑ ∞ 

j=0 ψ j+ | k | ψ j for k ∈ Z , F is the distribution function of X 0 , and � denotes the standard nor-

mal distribution function. Notice that (2) holds if ε0 is normally distributed. Conversely, (2) implies normality of the distri-

bution of ε , which in turn implies Gaussianity of the causal linear process X (see, e.g., Rosenblatt, 20 0 0 , Sec. 1.1). 
0 
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To allow for different types of dependence, it will be maintained throughout that the transfer function ψ(z) :=∑ ∞ 

j=0 ψ j z 
j , z ∈ C , associated with (1) satisfies 

ψ(z) = (1 − z) −d δ(z) , | z | < 1 , (3) 

for some real | d | < 

1 
2 , where δ(z) := 

∑ ∞ 

j=0 δ j z 
j , z ∈ C , and { δ j } j∈ Z + is an absolutely summable sequence of real num-

bers such that δ(0) = 1 and δ(1) � = 0. Under (1) and (3) , X is a fractionally integrated process with dependence (mem-

ory/fractional differencing) parameter d . Using the power series expansion 

(1 − z) −d = 

∞ ∑ 

j=0 

�(d + j) 

�(d)�(1 + j) 
z j , | z | < 1 , d � = 0 , 

where � denotes the gamma function, it is not difficult to see that, for d � = 0, 

ψ j = 

j ∑ 

s =0 

δ j−s �(d + s ) 

�(d)�(1 + s ) 
, j ≥ 1 , 

and so ψ j ∼ { δ(1) / �(d ) } j d−1 as j → ∞ , under the additional assumption that j 1 −d δ j → 0 as j → ∞ if 0 < d < 

1 
2 ( Hassler

and Kokoszka, 2010 ); the tilde signifies that the limiting value of the quotient of the left-hand side by the right-hand side

is 1. Hence, since γk ∼ c γ | k | 2 d−1 
as | k | → ∞ for d � = 0, with c γ := { σδ(1) } 2 �(1 − 2 d ) / { �(d )�(1 − d) } , ∑ ∞ 

k = −∞ 

γk = ∞ for

0 < d < 

1 
2 and X is long-range dependent; if − 1 

2 < d < 0 , then 

∑ ∞ 

k = −∞ 

γk = 0 and X is antipersistent. Short-range depen-

dence corresponds to d = 0 , with 

∑ ∞ 

k = −∞ 

γk = { σδ(1) } 2 . The class of stochastic processes defined by (1) and (3) is rich

enough to include a wide range of processes having slowly decaying autocovariances. A well-known example are autore-

gressive fractionally integrated moving average (ARFIMA) processes with δ(z) = ϑ(z) /ϕ(z) , ϑ( z ) and ϕ( z ) being relatively

prime polynomials of finite degree with ϕ( z ) � = 0 for | z | ≤ 1 (see, e.g., Palma, 2007 , Sect. 3.2). 

The test for the hypothesis in (2) considered here is based on the Anderson–Darling distance statistic 

A := 

∫ ∞ 

−∞ 

{ ̂  F ( ̄X + ˆ γ 1 / 2 
0 

x ) − �(x ) } 2 
�(x ) { 1 − �(x ) } d �(x ) , (4) 

where ˆ F (x ) := n −1 
∑ n 

t=1 I (X t ≤ x ) , x ∈ R , is the empirical distribution function of X n , X̄ := n −1 
∑ n 

t=1 X t , ˆ γk :=
n −1 

∑ n −| k | 
t=1 

(X t+ | k | − X̄ )(X t − X̄ ) for | k | < n , and I denotes the indicator function. Note that A may be expressed as 

A = −1 − n 

−2 
n ∑ 

t=1 

( 2 t − 1 ) [ log �(Y t ) + log { 1 − �(Y n −t+1 ) } ] , (5)

where Y t := ˆ γ −1 / 2 
0 

(X n : t − X̄ ) and X n : t is the t -th order statistic from X n (cf. Anderson and Darling, 1954 ). 

As is well known, the asymptotic null distribution of distance statistics such as A is closely related to the weak limit,

as n tends to infinity, of (a suitably normalized version of) the random function 

ˆ K (x ) := 

ˆ F (x ) − �( ̂  γ −1 / 2 
0 

(x − X̄ )) , x ∈ R (see,

e.g., Shorack and Wellner, 1986 , Ch. 5, for the case of i.i.d. data). However, unless one is dealing with the classical problem

of testing a simple null hypothesis ( μ and γ 0 known) for i.i.d. data, inference is complicated by the presence of both

estimated parameters in 

ˆ K and dependence in X n . To complicate matters further in our setup, the norming factor needed

in order to obtain weak convergence of ˆ K , and hence of the distribution of A , as well as the weak limits themselves,

depend on the value of the dependence parameter d and on the estimators of μ and γ 0 used in the construction of ˆ K 

(see Beran and Ghosh, 1991; Ho, 2002; Kulik, 2009 ). For example, when ε0 is normally distributed, the random function

K(x ) := 

ˆ F (x ) − �(γ −1 / 2 
0 

(x − μ)) , x ∈ R , converges weakly to a non-degenerate Gaussian process at the usual 
√ 

n rate for

d = 0 ( Doukhan and Surgailis, 1998 ) and to a semi-deterministic Gaussian process at the slower rate n (1 −2 d) / 2 for 0 < d < 

1 
2 

( Dehling and Taqqu, 1989; Giraitis and Surgailis, 1999 ). Replacing μ and γ 0 by estimates improves the rate of convergence

under long-range dependence, with 

ˆ K converging at rate 
√ 

n for 0 ≤ d < 

1 
3 ( Beran and Ghosh, 1991 ). This dependence of

the appropriate norming factor and of the weak limit of ˆ K on the unknown value of the parameter d , combined with the

complicated covariance structure of the relevant limiting processes, make inference based on conventional large-sample

asymptotics for A extremely cumbersome. It is worth remarking that similar difficulties also arise in the case of moment-

based skewness and kurtosis statistics (cf. Boutahar, 2010; Ho, 2002 ). 

As a practical way of circumventing the problems mentioned above, we propose to use an autoregressive sieve bootstrap

procedure to obtain P -values and/or critical values for the normality test based on A . The principal advantage of the sieve

bootstrap is that it can be used to approximate the sampling properties of A without knowledge or estimation of the de-

pendence parameter. Moreover, because bootstrap approximations are constructed from replicates of A , there is no need to

derive analytically, nor to make assumptions about, the appropriate norming factor for A or its asymptotic null distribution.
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3. Autoregressive sieve bootstrap approximation 

The autoregressive sieve bootstrap is motivated by the observation that, under (1), (3) and the additional assumption

that δ( z ) � = 0 for | z | ≤ 1, X admits the representation 

∞ ∑ 

j=0 

φ j (X t− j − μ) = ε t , t ∈ Z , (6)

for a square-summable sequence of real numbers { φ j } j∈ Z + (with φ0 = 1 ) such that φ(z) := 

∑ ∞ 

j=0 φ j z 
j = (1 − z) d /δ(z) for | z |

< 1 (with φ j ∼ { δ(1)�(−d ) } −1 j −d−1 as j → ∞ when d � = 0). The idea is to approximate (6) by a finite-order autoregressive

model and use this as the basis of a semi-parametric bootstrap scheme. If the order of the autoregressive approximation

is allowed to increase simultaneously with n at an appropriate rate, the distribution of the process in (6) will be matched

asymptotically (cf. Kreiss, 1992; Bühlmann, 1997; Kapetanios and Psaradakis, 2006; Poskitt, 2008 ). 

It is important to point out that, as discussed in Poskitt (2007) , the autoregressive representation (6) provides a mean-

ingful approximation even if δ( z ) has zeros in the unit disc | z | < 1. In this case, the transfer function φ( z ) associated with

(6) may be viewed as arising, not from the inversion of ψ( z ), but as the limit of 
∑ p 

j=0 
φpj z 

j ( φp 0 := 1) as p tends to infinity,

where, for any integer p > 0, (−φp1 , . . . , −φpp ) are the coefficients of the best (in the mean-square sense) linear predictor of

X 0 based on { X −1 , . . . , X −p } . Since γ 0 > 0 and γ k → 0 as | k | → ∞ under (1) and (3) , (φp1 , . . . , φpp ) are uniquely determined

as the solution of the set of equations 
∑ p 

j=0 
φpj γk − j = 0 (k = 1 , . . . , p) ( Brockwell and Davis, 1991 , Corollary 5.1.1), and are

such that 
∑ p 

j=0 
φpj z 

j � = 0 for | z | ≤ 1 and Var [ 
∑ p 

j=0 
φpj (X − j − μ)] → σ 2 as p → ∞ . 

The bootstrap procedure used to approximate the sampling properties of the statistic A under the normality hypothesis

is as follows. For an integer p > 0 (chosen as a function of n so that p −1 + n −1 p → 0 as n → ∞ ), let ( ̂  φp1 , . . . , 
ˆ φpp ) and ˆ σp

be estimators (based on X n ) of the coefficients and the noise standard deviation, respectively, of an autoregressive model of

order p for X t − X̄ . Bootstrap replicates X 

∗ := { X ∗t } t∈ Z of X are then defined via the recursion 

p ∑ 

j=0 

ˆ φp j (X 

∗
t− j − X̄ ) = ˆ σp ε 

∗
t , t ∈ Z , (7)

where ˆ φp0 := 1 and { ε ∗t } t∈ Z are i.i.d. standard normal random variables (independent of X n ). Finally, the bootstrap analogue

A 

∗ of A is defined as in (4) but with X 

∗
n := { X ∗

1 
, X ∗

2 
, . . . , X ∗n } replacing X n . The conditional distribution of A 

∗, given X n ,

constitutes the sieve bootstrap approximation to the null sampling distribution of A . 

It is worth noting that, by requiring ε ∗t in (7) to be Gaussian, X 

∗ is constructed in a way which reflects the normality hy-

pothesis under test even though X may not satisfy (2) . This is important for ensuring that the bootstrap test has reasonable

power against departures from normality (cf. Hall and Wilson, 1991; Lehmann and Romano, 2005 , Sect. 15.6). The estima-

tor ( ̂  φp1 , . . . , 
ˆ φpp , ˆ σp ) used in (7) to define X 

∗ may be the Yule–Walker estimator or any other asymptotically equivalent

estimator (e.g., the least-squares estimator). 

Recalling that A may be expressed as in (5) , consistency of the sieve bootstrap estimator of the null sampling distribution

of A follows from Lemma 1, Theorem 2 and Remark 2 of Poskitt (2008) under a suitable assumption about the rate of

increase of p . More specifically, let ρ(H, H 

∗) := { ∫ 1 0 | H 

−1 (u ) − H 

∗−1 (u ) | 2 d u } 1 / 2 stand for the Mallows–Wasserstein distance

between the distribution function H of A and the conditional distribution function H 

∗of A 

∗ given X n (where g −1 (u ) := inf { x :
g(x ) ≥ u } for any non-decreasing function g ). Then, if X satisfies (1) and (3) , the distribution of ε0 is Gaussian, and p → ∞
and ( log n ) −ν p = O (1) as n → ∞ for some ν ≥ 1, we have ρ( H , H 

∗) → 0 with probability 1 as n → ∞ . We note that,

although Poskitt (2008) considers a bootstrap scheme in which ε ∗t in (7) is drawn from the empirical distribution of the

residuals ˆ ε t := 

∑ p 
j=0 

ˆ φpj (X t− j − X̄ ) (t = p + 1 , . . . , n ) , standardized to have mean 0 and variance 1, it is not difficult to see

that the arguments in the proof of his Theorem 2 go through with little or no change when εt and ε ∗t are Gaussian. 

The bootstrap estimator of the P -value for a test that rejects for large values of A is P ∗A := 1 − H 

∗(A ) , and so normality is

rejected at a given level of significance α ∈ (0, 1) if P ∗A ≤ α. Since convergence with respect to ρ implies weak convergence

( Bickel and Freedman, 1981 , Lemma 8.3), the bootstrap P -value P ∗A is asymptotically equivalent to the P -value based on

the null sampling distribution of A under the conditions stated above. While H 

∗ is unknown, an approximation (of any

desired accuracy) can be obtained by Monte Carlo simulation. Specifically, if (A 

∗
1 
, . . . , A 

∗
m 

) are copies of A 

∗, obtained from

m independent bootstrap pseudo-samples X 

∗
n from (7) , then the empirical distribution function of (A 

∗
1 
, . . . , A 

∗
m 

) provides

an approximation to H 

∗. Hence, P ∗A may be approximated by ˆ P ∗A := m 

−1 
∑ m 

i =1 I (A 

∗
i 

> A ) , so that ˆ P ∗A → P ∗A with probability 1

as m → ∞ . A bootstrap critical value of nominal level α for A is given by H 

∗−1 (1 − α) , which may be approximated by

inf { x ∈ R : m 

−1 
∑ m 

i =1 I (A 

∗
i 

≤ x ) ≥ 1 − α} . 
In the implementation of the bootstrap procedure in practice, replicates X 

∗
n may be obtained according to (7) by setting

X ∗−p+1 
= · · · = X ∗

0 
= X̄ , generating n + b replicates X ∗t , t ≥ 1, for some large integer b > 0, and then discarding the initial b

replicates to eliminate start-up effects (this procedure, with b = 500 , is used in the sequel). The order of the autoregres-

sive sieve may be selected as the minimizer of Akaike’s information criterion AIC (p) := log ˆ σ 2 
p + 2 n −1 p over 1 ≤ p ≤ p max 

for some suitable maximal order p max . Under mild regularity conditions, a data-dependent choice of p based on AIC is

asymptotically efficient, in the sense defined by Shibata (1980) , for all | d | < 

1 ( Poskitt, 2007 , Theorem 9); furthermore, it
2 
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satisfies, with probability 1, the growth conditions required for the asymptotic validity of the sieve bootstrap as long as

p max grows to infinity with n so that ( log n ) −h p max is eventually bounded for some h ≥ 1 ( Psaradakis, 2016 , Proposition 2).

Alternative criteria for order selection that may be used include, among many others, the Bayesian information criterion

BIC (p) := log ˆ σ 2 
p + n −1 p log n and Mallows’ criterion MC (p) := ˆ σ−2 ∞ 

ˆ σ 2 
p − 1 + 2 n −1 p, where ˆ σ 2 ∞ 

:= 2 π exp (C + n −1 
0 

∑ n 0 
i =1 

log I i ) .

Here, I i := (2 πn ) −1 | ∑ n 
t=1 X t exp (−ω i t 

√ −1 ) | 2 is the periodogram ordinate of X n at the Fourier frequency ω i := 2 π i / n ,

C = −�′ (1) is Euler’s constant, and n 0 := � (n − 1) / 2  , � ·  denoting the greatest-integer function. The quantity ˆ σ 2 ∞ 

is a

non-parametric estimator of σ 2 motivated by the observation that σ 2 = 2 π exp { (2 π) −1 
∫ π
−π log �(ω ) d ω } , where � is the

spectral density of X . Like AIC, MC is an asymptotically efficient selection criterion. 

We conclude this section by remarking that the linear structure imposed by (1) and (3) may arguably be considered as

somewhat restrictive. However, since non-linear processes with a Gaussian one-dimensional marginal distribution appear to 

be a rarity (see, e.g., Tong, 1990 , Sect. 4.2), the focus on linear dependence is not perhaps unjustifiable when the objective is

to test for normality. In any case, the results of Bickel and Bühlmann (1997) suggest that linearity may not be too onerous a

requirement in the sense that the closure (with respect to the total variation metric) of the class of linear processes is quite

large; roughly speaking, for any stationary non-linear process, there exists another process in the closure of linear processes

having identical sample paths with probability exceeding 0.36. This suggests that the autoregressive sieve bootstrap is likely

to yield reasonably good approximations within a class of processes larger than that associated with (1) or (6) . 

4. Simulation study 

In this section, we present and discuss the results of a simulation study examining the small-sample properties of the

distance-based test of normality under various data-generating mechanisms. 

4.1. Experimental design and simulation 

In the first set of experiments, we examine the performance of the test based on A under different types of dependence

by considering artificial data generated according to the ARFIMA process 

M1: (1 –0 . 7 L ) X t = (1 –0 . 3 L )(1 − L ) −d ε t , d ∈ {−0 . 4 , −0 . 25 , 0 , 0 . 25 , 0 . 4 } , 
where L denotes the lag operator and { εt } are i.i.d. random variables. (Note that the stationary solution of M1 satisfies ( 1 )

with μ = 0 , ψ 1 = 0 . 4 + ζ1 and ψ j = 0 . 7 ψ j−1 − 0 . 3 ζ j−1 + ζ j for j ≥ 2, where ζ j := �(d + j) / { �(d)�(1 + j) } for j ≥ 1 and d

� = 0.) The distribution of εt is normal (labeled N in what follows), lognormal (labeled LN), or a member of the family of

generalized lambda distributions having quantile function F −1 
ε (u ) = λ1 + λ−1 

2 
{ u λ3 − (1 − u ) λ4 } , 0 < u < 1; the parameter

values used in the experiments are taken from Bai and Ng (2005) and can be found in Table 1 . The distributions S1–S3

are symmetric, whereas A1–A3 and LN are asymmetric. Throughout this section, { εt } are standardized to have mean 0 and

variance 1. 

In the second set of experiments, we assess the robustness of the test based on A with respect to departures from the

linearity assumption underlying the autoregressive sieve bootstrap by using artificial data from the models 

M2: X t = 0 . 5 X t−1 − 0 . 3 X t−1 ε t−1 + ε t , 
M3: X t = (0 . 9 X t−1 + ε t ) I ( | X t−1 | ≤ 1) − (0 . 3 X t−1 − 2 ε t ) I ( | X t−1 | > 1) , 

M4: X t = 0 . 5 X t−1 + ε t ε t−1 . 

M2 is a bilinear model, M3 is a threshold autoregressive model, and M4 is an autoregressive model with one-dependent,

uncorrelated noise. In all three cases, { X t } is short-range dependent and does not admit the representation (1) or (6) . Fur-

thermore, the distribution of X t is non-Gaussian even if εt is normally distributed. In addition, we consider artificial data

generated according to 

M5: X t = �−1 (F ξ (ξt )) , ξt = β| ξt−1 | + ε t , β ∈ {−0 . 5 , 0 . 5 } , 
Table 1 

Parameters of a generalized lambda distribution and selected descriptive statistics. 

λ1 λ2 λ3 λ4 Skewness Kurtosis 

N – – – – 0.0 3 .0 

S1 0.0 0 0 0 0 0 −1.0 0 0 0 0 0 −0.080 0 0 0 −0.080 0 0 0 0.0 6 .0 

S2 0.0 0 0 0 0 0 −0.397912 −0.160 0 0 0 −0.160 0 0 0 0.0 11 .6 

S3 0.0 0 0 0 0 0 −1.0 0 0 0 0 0 −0.240 0 0 0 −0.240 0 0 0 0.0 126 .0 

A1 0.0 0 0 0 0 0 −1.0 0 0 0 0 0 −0.0 0750 0 −0.030 0 0 0 1.5 7 .5 

A2 0.0 0 0 0 0 0 −1.0 0 0 0 0 0 −0.10 090 0 −0.180200 2.0 21 .1 

A3 0.0 0 0 0 0 0 −1.0 0 0 0 0 0 −0.0 010 0 0 −0.130 0 0 0 3.2 23 .8 

LN – – – – 6.2 113 .9 
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Table 2 

Rejection frequencies of A test under M1. 

n = 100 n = 200 n = 500 

Distr. \ d −0.40 −0.25 0 0.25 0.40 −0.40 −0.25 0 0.25 0.40 −0.40 −0.25 0 0.25 0.40 

N 0.06 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.05 0.06 0.05 0.06 0.05 0.05 0.07 

S1 0.48 0.44 0.25 0.12 0.12 0.75 0.70 0.41 0.14 0.09 0.98 0.97 0.75 0.16 0.11 

S2 0.72 0.73 0.44 0.21 0.15 0.94 0.92 0.66 0.23 0.13 1.00 1.00 0.97 0.33 0.15 

S3 0.88 0.85 0.61 0.31 0.21 0.99 0.99 0.88 0.37 0.21 1.00 1.00 1.00 0.58 0.24 

A1 0.97 0.95 0.77 0.25 0.15 1.00 1.00 0.98 0.42 0.16 1.00 1.00 1.00 0.71 0.23 

A2 0.90 0.86 0.64 0.29 0.20 0.99 0.99 0.91 0.43 0.21 1.00 1.00 1.00 0.69 0.32 

A3 1.00 1.00 1.00 0.59 0.29 1.00 1.00 1.00 0.83 0.33 1.00 1.00 1.00 0.99 0.54 

LN 1.00 1.00 1.00 0.78 0.41 1.00 1.00 1.00 0.94 0.54 1.00 1.00 1.00 1.00 0.82 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where F ξ is the distribution function of ξ t . When εt is normally distributed, the threshold autoregressive process { ξ t } is

stationary with 

F ξ (x ) = 

{
2(1 − β2 ) /π

}1 / 2 
∫ x 

−∞ 

exp 

{
− 1 

2 
(1 − β2 ) y 2 

}
�(βy ) d y, x ∈ R , 

for all | β| < 1 (see And ̌el and Ranocha, 2005 ), and X t is a standard normal random variable for each t . 

In the final set of experiments, we compare the distance test based on A to the moment-based test discussed in Bai and

Ng (2005) . The latter is based on the statistic 

B := n { ̂  τ−2 
3 ˆ κ2 

3 + ˆ τ−2 
4 ( ̂  κ4 − 3) 2 } , 

where ˆ κr := n −1 
∑ n 

t=1 { ̂  γ −1 / 2 
0 

(X t − X̄ ) } r (r = 3 , 4) , and ˆ τ 2 
3 and ˆ τ 2 

4 are estimators of the asymptotic variance of 
√ 

n ̂  κ3 and√ 

n ( ̂  κ4 − 3) , respectively, that are consistent under normality. As in Bai and Ng (2005) , ˆ τ 2 
3 

and ˆ τ 2 
4 

are constructed using a

non-parametric kernel estimator with Bartlett weights and a data-dependent bandwidth selected according to the procedure

of Andrews (1991) . When { X t } is a Gaussian process with absolutely summable autocovariances, the asymptotic distribution

of B is chi-square with 2 degrees of freedom. (We note that the normality test of Lobato and Velasco (2004) is also based

on B, but their choice for ˆ τ 2 
3 

and ˆ τ 2 
4 

is different from that of Bai and Ng (2005) . Following Bai and Ng (2005) , the data-

generating mechanism is the autoregressive model 

M6: X t = ϕX t−1 + ε t , ϕ ∈ { 0 , 0 . 5 , 0 . 8 } . 
For each design point, 10 0 0 independent realizations of { X t } of length 500 + n, with n ∈ {10 0, 20 0, 50 0}, are generated.

The first 500 data points of each realization are then discarded in order to eliminate start-up effects and the remaining n

data points are used to compute the value of the test statistic of interest. P -values for the distance test are computed from

m = 10 0 0 bootstrap replicates of A . Unless stated otherwise, the sieve order is selected by AIC with p max = � ( log n ) 2  ; the

approximating autoregressive model is fitted by least-squares, which is preferred over the Yule–Walker method because it

produces estimates that exhibit smaller finite-sample bias. 

4.2. Simulation results 

The Monte Carlo rejection frequencies, under M1, of the distance test at 5% significance level ( α = 0 . 05 ) are reported in

Table 2 . The null rejection probabilities of the test are generally insignificantly different from the nominal level across all

values of the dependence parameter. The test also performs well under non-Gaussianity, its rejection frequencies improving

with larger sample sizes and smaller values of the dependence parameter. Asymmetry in the distribution of εt leads, perhaps

unsurprisingly, to higher rejection rates. For long-range dependent data, the test generally suffers a loss in power compared

to the short-range dependent or antipersistent cases, a loss which becomes more pronounced the larger the value of d is.

Psaradakis (2016) reports a similar finding for bootstrap-based tests of distributional symmetry about an unspecified centre.

As a robustness check, we repeat the experiments setting p max = 2 � ( log n ) 2  . The rejection frequencies of a 5%-level

distance test shown in Table 3 (for n = 200 ) reveal that, irrespective of the value of the dependence parameter, there are no

substantial changes in the empirical level and power of the test as a result of the increase in the maximal sieve order. 

To assess the sensitivity of results with respect to the method used to determine the order of the autoregressive sieve, we

consider selecting the latter by minimizing BIC and MC in addition to AIC. The rejection frequencies under M1 of a 5%-level

test based on A , with n = 200 and p max = � ( log n ) 2  , are reported in Table 4 . It is clear that there is little to choose between

BIC, MC and AIC, the rejection frequencies not being notably different across the three criteria for any given combination of

noise distribution and value of d . It is worth noting that results from experiments based on artificial time series of length

n = 100 and n = 500 from M1 confirm the robustness of the properties of the distance test with respect to the choice of

order selection criterion and maximal sieve order. 

The distance test based on A also works very well for data-generating processes which are not representable as (1) or

(6) . This can be seen in Table 5 , which shows the rejection frequencies of a 5%-level test under M2, M3 and M4. The
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Table 3 

Rejection frequencies of A test under M1, n = 200 . 

p max = � ( log n ) 2  p max = 2 � ( log n ) 2  
Distr. \ d −0.40 −0.25 0 0.25 0.40 −0.40 −0.25 0 0.25 0.40 

N 0 .05 0 .05 0 .05 0 .05 0 .06 0 .05 0 .04 0 .04 0 .06 0 .06 

S1 0 .75 0 .70 0 .41 0 .14 0 .09 0 .75 0 .67 0 .43 0 .14 0 .12 

S2 0 .94 0 .92 0 .66 0 .23 0 .13 0 .92 0 .95 0 .66 0 .21 0 .15 

S3 0 .99 0 .99 0 .88 0 .37 0 .21 0 .99 0 .99 0 .87 0 .37 0 .23 

A1 1 .00 1 .00 0 .98 0 .42 0 .16 1 .00 1 .00 0 .97 0 .45 0 .18 

A2 0 .99 0 .99 0 .91 0 .43 0 .21 0 .99 0 .98 0 .89 0 .43 0 .24 

A3 1 .00 1 .00 1 .00 0 .83 0 .33 1 .00 1 .00 1 .00 0 .83 0 .35 

LN 1 .00 1 .00 1 .00 0 .94 0 .54 1 .00 1 .00 1 .00 0 .94 0 .55 

Table 4 

Rejectionfrequencies of A test under M1, n = 200 , and p max = � ( log n ) 2  . 
AIC BIC MC 

Distr. \ d −0.40 −0.25 0 0.25 0.40 −0.40 −0.25 0 0.25 0.40 −0.40 −0.25 0 0.25 0.40 

N 0 .05 0 .05 0 .05 0 .05 0 .06 0 .06 0 .04 0 .06 0 .07 0 .07 0 .06 0 .03 0 .04 0 .06 0 .05 

S1 0 .75 0 .70 0 .41 0 .14 0 .09 0 .75 0 .71 0 .38 0 .135 0 .10 0 .71 0 .70 0 .36 0 .13 0 .12 

S2 0 .94 0 .92 0 .66 0 .23 0 .13 0 .93 0 .92 0 .68 0 .26 0 .14 0 .95 0 .92 0 .67 0 .24 0 .13 

S3 0 .99 0 .99 0 .88 0 .37 0 .21 0 .99 0 .99 0 .88 0 .39 0 .23 0 .99 0 .98 0 .86 0 .35 0 .21 

A1 1 .00 1 .00 0 .98 0 .42 0 .16 1 .00 1 .00 0 .97 0 .478 0 .17 1 .00 1 .00 0 .97 0 .41 0 .16 

A2 0 .99 0 .99 0 .91 0 .43 0 .21 0 .99 0 .99 0 .91 0 .45 0 .20 1 .00 0 .99 0 .89 0 .40 0 .19 

A3 1 .00 1 .00 1 .00 0 .83 0 .33 1 .00 1 .00 1 .00 0 .82 0 .38 1 .00 1 .00 1 .00 0 .80 0 .35 

LN 1 .00 1 .00 1 .00 0 .94 0 .54 1 .00 1 .00 1 .00 0 .95 0 .59 1 .00 1 .00 1 .00 0 .95 0 .51 

Table 5 

Rejection frequencies of A test under M2–M4. 

n = 100 n = 200 n = 500 

Distr. M2 M3 M4 M2 M3 M4 M2 M3 M4 

N 0.37 0.28 0.94 0.64 0.43 1.00 0.93 0.82 1.00 

S1 0.68 0.65 0.99 0.93 0.91 1.00 1.00 1.00 1.00 

S2 0.81 0.79 0.99 0.97 0.97 1.00 1.00 1.00 1.00 

S3 0.87 0.89 1.00 0.99 0.99 1.00 1.00 1.00 1.00 

A1 0.57 0.86 0.97 0.84 0.99 1.00 0.99 1.00 1.00 

A2 0.71 0.86 0.99 0.91 0.99 1.00 1.00 1.00 1.00 

A3 0.96 1.00 0.97 1.00 1.00 1.00 1.00 1.00 1.00 

LN 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 

Table 6 

Rejection frequencies of A test under M5. 

β n = 100 n = 200 n = 500 

0.5 0.053 0.057 0.052 

−0.5 0.040 0.050 0.052 

 

 

 

 

 

 

 

 

 

 

 

 

rejection rate of the distance test exceeds 57% for any design point with non-Gaussian noise, even for the smallest sample

size considered. In the case of artificial time series from M5, the one-dimensional marginal distribution of which is Gaussian,

the test has rejection rates that do not differ substantially from the nominal level, as can be seen in Table 6 . 

Let us finally turn to Table 7 , which contains the rejection frequencies, at the 5% significance level, of the tests based on A
and B under M6. Unlike the distance test, the moment-based test is prone to level distortion. The differences in the empirical

levels of the two tests notwithstanding, the distance test has a clear advantage under non-normality, outperforming the

moment-based test for every design point in our simulations. The differences are particularly striking for symmetric noise

distributions, cases in which the B test has little or no power to detect non-Gaussianity when ϕ � = 0. 

Since the comparison between the distance-based and moment-based tests is perhaps somewhat unfair given that the

latter relies on a conventional large-sample approximation to the null distribution of B, we also consider a bootstrap-based

version of the B test. Specifically, the same autoregressive sieve bootstrap procedure that is used in the case of the distance

test is employed to compute P -values and critical values for a normality test based on B. The rejection frequencies, at the

5% significance level, of the bootstrap-based B test for n = 200 are shown in Table 8 under the heading B B . Although the

test controls the probability of Type I error marginally better than its asymptotic counterpart B, it is clearly dominated by

the distance A test in terms of power. 
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Table 7 

Rejection frequencies of A and B tests under M6. 

n = 100 n = 200 n = 500 

Distr. \ ϕ 0.0 0.5 0.8 0.0 0.5 0.8 0.0 0.5 0.8 

A B A B A B A B A B A B A B A B A B

N 0.05 0.05 0.05 0.03 0.08 0.01 0.05 0.09 0.06 0.05 0.06 0.02 0.05 0.08 0.05 0.09 0.05 0.04 

S1 0.50 0.06 0.27 0.01 0.13 0.00 0.78 0.13 0.43 0.04 0.15 0.00 0.99 0.53 0.76 0.22 0.16 0.02 

S2 0.72 0.07 0.43 0.04 0.17 0.01 0.95 0.22 0.70 0.09 0.24 0.02 1.00 0.50 0.97 0.34 0.39 0.06 

S3 0.89 0.09 0.64 0.04 0.30 0.01 1.00 0.20 0.89 0.11 0.37 0.03 1.00 0.37 1.00 0.33 0.62 0.09 

A1 0.98 0.81 0.79 0.21 0.26 0.00 1.00 1.00 0.98 0.83 0.44 0.03 1.00 1.00 1.00 1.00 0.81 0.46 

A2 0.92 0.22 0.66 0.10 0.28 0.01 1.00 0.52 0.90 0.35 0.44 0.06 1.00 0.87 1.00 0.79 0.76 0.36 

A3 1.00 0.95 1.00 0.45 0.59 0.00 1.00 0.99 1.00 0.97 0.87 0.03 1.00 1.00 1.00 1.00 1.00 0.73 

LN 1.00 0.84 1.00 0.73 0.81 0.02 1.00 0.94 1.00 0.93 0.97 0.16 1.00 0.99 1.00 0.97 1.00 0.88 

Table 8 

Rejection frequencies of A , B, and B B tests under M6 and n = 200 . 

Distr. \ ϕ 0.0 0.5 0.8 

A B B B A B B B A B B B 

N 0.05 0.09 0.07 0.06 0.05 0.05 0.06 0.02 0.05 

S1 0.78 0.13 0.07 0.43 0.04 0.03 0.15 0.00 0.02 

S2 0.95 0.22 0.10 0.70 0.09 0.05 0.24 0.02 0.04 

S3 1.00 0.20 0.10 0.89 0.11 0.08 0.37 0.03 0.04 

A1 1.00 1.00 0.98 0.98 0.83 0.90 0.44 0.03 0.26 

A2 1.00 0.52 0.36 0.90 0.35 0.37 0.44 0.06 0.16 

A3 1.00 0.99 0.97 1.00 0.97 0.98 0.87 0.03 0.56 

LN 1.00 0.94 0.90 1.00 0.93 0.89 0.97 0.16 0.58 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Real-data application 

The bootstrap-based distance test for normality is applied to a large set of U.S. economic and financial time series. The

data set consists of 79 time series associated with the financial markets (12 series), the labour market (22 series), prices

(17 series), money and credit (7 series), output, income and capacity (14 series), and surveys (7 series). All time series

are monthly, spanning the period 1971–2013, seasonally adjusted, and (with the exception of survey series) transformed to

stationarity by differencing either the raw series (indicated by � in what follows) or their natural logarithms (indicated by

�log ). The data were downloaded from Haver Analytics. 

P -values for the normality test based on A are presented in Table 9 . These are computed from 10 , 0 0 0 bootstrap replica-

tions, with the data-dependent sieve order ˆ p determined as the minimizer of AIC over 1 ≤ p ≤ � (log n ) 2  . For comparison,

we also report asymptotic P -values for the test based on B (with ˆ τ 2 
3 

and ˆ τ 2 
4 

computed as in Section 4 ). Finally, we report

a semi-parametric estimate ˆ d of the dependence parameter of each time series, obtained using the local Whittle estimator,

that is, the minimizer over | d | ≤ 0.499 of the objective function 

log 

( 

� −1 
� ∑ 

i =1 

ω 

2 d 
i I i 

) 

− 2 d� −1 
� ∑ 

i =1 

log ω i , 

where � is a positive integer chosen as a function of n so that � −1 + n −1 � → 0 as n → ∞ (see Robinson, 1995 ). We set

� = �{ 16(−2 . 19 ̂ c ) 2 } −1 / 5 n 4 / 5  , where ˆ c is the least-squares estimate of the third coefficient in the pseudo-regression of log I i
on (1 , −2 log ω i , ω 

2 
i 
/ 2) , i = 1 , . . . , � 0 . 3 n 8 / 9  (cf. Henry and Robinson, 1996; Andrews and Sun, 2004 ). 

Evidence in favour of non-Gaussianity in the U.S. economic time series is overwhelming: the null hypothesis is rejected,

at the 5% significance level, for 95% of the series on the basis of the A test. Interestingly, non-normality is found to be

a characteristic feature for all six categories of time series. By comparison, the moment-based B test leads to rejection of

normality in only 30% of the cases. It must be borne in mind, however, that the validity of the test based on B relies heavily

on the assumption of short-range dependence in the data. Such an assumption does not accord well with the estimates of

the dependence parameter shown in Table 9 , on the basis of which short-range dependence ( d = 0 ) is rejected in favour

of long-range dependence ( d > 0) for almost 80% of the time series under consideration. It is also worth recalling from

our earlier simulation study that, even for short-range dependent data, the moment-based test appears to be considerably

less successful than the distance-based test at detecting deviations from Gaussianity. The non-normality of the marginal

distribution of the time series under consideration may, of course, be due to a variety of sources, including non-normal

noise in a linear representation like (1) , non-linearity, and conditional heteroskedasticity. 
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Table 9 

P -values of the A and B tests. 

Series Transformation A B ˆ p ˆ d se ( ̂  d ) 

(A) Financial market 

10-year treasury constant maturity rate � 0.00 0.10 22 -0.03 0.06 

1-year treasury constant maturity rate � 0.00 0.17 19 -0.10 0.06 

3-month treasury bill: secondary market rate � 0.00 0.16 20 -0.01 0.05 

5-year treasury constant maturity rate � 0.00 0.16 22 -0.07 0.07 

Effective f ederal funds rate � 0.00 0.12 38 -0.13 0.08 

Moody’s seasoned aaa corporate bond yield � 0.00 0.04 15 0.01 0.05 

Moody’s seasoned baa corporate bond yield � 0.00 0.12 5 0.16 0.07 

Foreign exchange rate (Yen per US dolar) �log 0.00 0.01 14 0.16 0.04 

Foreign exchange rate (Pound per US dolar) �log 0.00 0.12 3 -0.04 0.08 

Foreign Exchange rate (Franc per US dolar) �log 0.00 0.01 11 0.05 0.05 

SP 500 composite index (1941–43 = 10) �log 0.00 0.05 11 0.03 0.07 

SP industrialIndex (1941–43 = 10) �log 0.00 0.04 22 0.02 0.07 

(B) Employment, hours, Earnings 

All employees: construction �log 0.00 0.00 38 0.49 0.07 

All employees: durable goods �log 0.00 0.05 36 0.43 0.08 

All employees: financial activities �log 0.55 0.53 38 0.49 0.06 

All employees: goods-producing industries �log 0.00 0.12 37 0.49 0.07 

All employees: government �log 0.00 0.10 18 0.32 0.07 

All employees: manufacturing �log 0.00 0.05 36 0.44 0.08 

All employees: mining and logging: mining �log 0.00 0.16 38 0.24 0.07 

All employees: nondurable goods �log 0.00 0.33 38 0.22 0.09 

All employees: retail trade �log 0.01 0.03 36 0.49 0.09 

All employees: service-providing Industries �log 0.01 0.21 25 0.49 0.09 

All employees: total nonfarm �log 0.00 0.04 36 0.49 0.06 

All employees: trade, transportation and utilities �log 0.00 0.14 36 0.49 0.07 

All employees: wholesale trade �log 0.02 0.22 37 0.49 0.06 

Average hourly earnings of production: construction �log 0.00 0.15 35 0.49 0.08 

Averagehourly earnings of production: goods-Producing �log 0.00 0.00 33 0.49 0.08 

Average hourly earnings of production: manufacturing �log 0.00 0.00 34 0.49 0.08 

Average weekly hours of production: goods-producing � 0.00 0.37 35 -0.06 0.07 

Average weekly hours of production: Manufacturing � 0.00 0.35 36 -0.04 0.06 

Average weekly overtime hours: manufacturing � 0.00 0.27 35 -0.07 0.04 

Civilian employment �log 0.00 0.04 37 0.35 0.06 

Civilian labor force � 0.00 0.24 37 0.28 0.08 

Civilian unemployment rate � 0.00 0.21 38 0.49 0.07 

(C) Prices 

Consumer price index: all items �log 0.00 0.00 18 0.49 0.07 

Consumer price index: all items less food �log 0.00 0.02 15 0.41 0.07 

Consumer price index: apparel �log 0.00 0.03 18 0.39 0.09 

Consumerprice index: commodities �log 0.00 0.19 17 0.18 0.06 

Consumer price index: durables �log 0.00 0.00 37 0.28 0.05 

Consumer price index: medical Care �log 0.00 0.09 36 0.49 0.08 

Consumer price index: services �log 0.00 0.07 31 0.49 0.09 

Consumer price index: transportation �log 0.00 0.32 12 0.06 0.08 

Personal consumption expenditures �log 0.00 0.00 17 0.49 0.08 

Personal consumption expenditures: durable goods �log 0.03 0.16 37 0.49 0.08 

Personal consumption expenditures: nondurable goods �log 0.00 0.10 16 0.18 0.04 

Personal consumption expenditures: services �log 0.00 0.00 36 0.49 0.09 

Producer price index: commodities: metals �log 0.00 0.06 20 0.00 0.09 

Producer price index: crude materials �log 0.00 0.04 38 -0.17 0.09 

Producer price index: finished consumer goods �log 0.00 0.16 17 0.21 0.05 

Producer price index: finished goods �log 0.00 0.11 17 0.25 0.06 

Producer price index: intermediate materials �log 0.00 0.11 14 0.15 0.09 

(D) Money and credits 

M1 money stock �log 0.00 0.15 36 0.45 0.08 

M2 money stock �log 0.00 0.06 34 0.34 0.05 

M3 money stock �log 0.00 0.05 34 0.35 0.05 

Commercial and industrial loans, all commercial banks �log 0.01 0.08 36 0.49 0.04 

Real estate loans, all commercial banks �log 0.07 0.12 7 0.49 0.08 

Real M2 money stock �log 0.00 0.26 18 0.26 0.06 

Total nonrevolving credit owned, outstanding �log 0.00 0.34 38 0.49 0.07 

(E) Output, income and capacity 

Industrial production: business equipment �log 0.00 0.21 12 0.40 0.05 

Industrial production: consumer goods �log 0.00 0.17 24 0.13 0.06 

Industrial production: durable materials �log 0.00 0.08 36 0.28 0.07 

Industrial production: final products �log 0.00 0.07 36 0.26 0.08 

Industrial production: fuels �log 0.00 0.42 36 -0.15 0.09 

Industrial production index �log 0.00 0.18 38 0.31 0.08 

( continued on next page ) 
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Table 9 ( continued ) 

Series Transformation A B ˆ p ˆ d se ( ̂  d ) 

Industrial production: manufacturing �log 0.00 0.18 38 0.23 0.08 

Industrial production: materials �log 0.00 0.09 37 0.30 0.07 

Industrial production: nondurable goods �log 0.76 0.55 37 0.17 0.08 

Industrial production: nondurable materials �log 0.00 0.17 37 -0.08 0.08 

Personal income �log 0.00 0.09 15 0.49 0.09 

Real personal income �log 0.00 0.10 17 0.37 0.09 

Real personal income excluding current transfers �log 0.00 0.14 14 0.36 0.10 

Capacity utilization: manufacturing � 0.00 0.22 38 0.14 0.08 

(F) Surveys 

ISM manufacturing: employment index – 0.04 0.06 38 0.49 0.08 

ISM manufacturing: inventories index – 0.02 0.01 37 0.49 0.07 

ISM manufacturing: new orders index – 0.00 0.01 38 0.35 0.08 

ISM manufacturing: PMI composite index – 0.01 0.02 38 0.49 0.08 

ISM manufacturing: prices index – 0.11 0.03 17 0.41 0.09 

ISM manufacturing: production index – 0.00 0.03 38 0.28 0.09 

ISM manufacturing: supplier deliveries – 0.00 0.11 38 0.34 0.09 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Conclusion 

This paper considered an Anderson–Darling distance test for normality of the one-dimensional marginal distribution of

stationary, fractionally integrated processes. As a practical way of implementing the test, we proposed using an autoregres-

sive sieve bootstrap procedure to estimate finite-sample P -values and/or critical values. The bootstrap-based test is valid for

short-range dependent, long-range dependent and antipersistent processes, and does not require knowledge or estimation

of the dependence parameter of the data or of the appropriate norming factor for the test statistic. Monte Carlo simulations

showed that the distance test has good size and power properties in small samples, although it tends to lack power when

the dependence parameter is large and positive. Under short-range dependence, the distance test was found to be more

successful than the popular skewness/kurtosis test in detecting departures from normality. An application to a set of U.S.

economic and financial time series revealed than non-Gaussianity is a prevalent feature of the data. 
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